
Building resilient websites
How to make web stuff that doesn’t suck

I guess most people here are involved professionally in the development of software.
And most of the time that means stuff which is on, or uses, the Internet - particularly
the web. But we all know just as well as the average punter that the web isn’t the
nirvana of user experience it’s cracked up to be. Why? How can we make it better?

That’s what we’re going to explore in this talk.

But first let’s define what we mean by ‘resilience’. The dictionary definition seems to
be nothing to do with the web. Let’s try to paraphrase this so we have a handle on it in
terms of websites.

Website resilience

The ability for a site
to encounter unexpected conditions,
yet not fail the user.

Here’s a definition I’ll be using. Sounds great, right? We all know that unexpected
conditions occur all the time on the web - we’ll be looking at some of those shortly - so
if a site can recover from those, bounce back, and not fail the user, that’s got to be a
good thing, right?

These unexpected conditions normally result in a sucky experience for our users and
customers. If we can mitigate those unexpected conditions, reduce the suck, we’ll end
up with happier users and we’ll improve the bottom line.

Web development
With great power
comes great responsibility

These conditions are sometimes out of our control. But more often than not they are
in our control, so we should do something about them. because make stuff that could
affect millions of lives, so we should be responsible with that power.

Wherever we can control how our sites respond to unexpected conditions, we should
do so.

https://almanac.httparchive.org/en/2019/

We’re going to be using data from the HTTP Archive, which has been gathering this
information for over a decade. Their yearly Web Almanac offers fascinating insights in
to a huge amount of data.

The first aspect we’re going to look at is:

https://almanac.httparchive.org/en/2019/

Networks
The need for speed

Networks. Or, as some people call them, “notworks”. We all know that network speeds
are getting faster - many of us here will have moved on from 3G to 4G for our mobile
devices, some perhaps even to 5G. And on desktop many of us are now on fibre
broadband, perhaps even fibre-to-the-home. But does the web feel fast, most of the
time? No.

https://www.nngroup.com/articles/the-need-for-speed/

The Nielsen Norman group, who have been doing research into user experience
since 1998, have analysed the data from the HTTP Archive to pull out a few sobering
facts. This first graph shows that in the US on desktop despite network speeds
increasing greatly since 2010, the median page load time has stayed relatively static.

https://www.nngroup.com/articles/the-need-for-speed/

https://www.nngroup.com/articles/the-need-for-speed/

For mobile devices the situation is even worse. Median page load time has got slower
over the last 10 years despite the network speed for many of us being faster than we
had to our desktops just a few years ago. The load time here is measured in seconds.
That’s right: the median load time for web pages is approaching 20 seconds.

This, I’m sure, will ring true for many people here. Often, the web just feels slow. What
does that mean for users?

https://www.nngroup.com/articles/the-need-for-speed/

This site sucks

They think the site sucks.

https://opensignal.com/

At this point we should recognise that there are a lot of moving parts which go into
delivering a web page. For mobile devices, network coverage, latency and congestion
play a major part. This data from OpenSignal shows that even close to a big city like
Leeds there are plenty of weak or dead spots. And if we travel to the beautiful
Yorkshire coast the situation is even worse.

The biggest problem with networks is we assume they are going to work. We assume
they are going to be relatively predictable and consistent. But they aren’t - mobile
networks in particular.

https://opensignal.com/

Assumptions will naturally be made at some point. But I
want to make as few of those assumptions as possible.
Because every assumption I make introduces fragility.

Every assumption introduces another way
that my site can break.

https://timkadlec.com/2015/06/thriving-in-unpredictability/

These assumptions are bad. Bad for us, bad for our sites, bad for our clients, users
and customers. Every assumption - especially assumptions about the network - is a
“fingers-crossed” wish for the best.

We can’t do much about making the network connection between a user and our sites
better, but we can definitely change how we use that connection. So that brings me
onto another subject over which we have no control.

https://timkadlec.com/2015/06/thriving-in-unpredictability/

Devices
You never know what
you’re gonna get

Devices. In most circumstances we have absolutely no control over the devices used
to access our websites. We hope - that is, we often assume - that most people are on
a reasonably new Apple or Android device. And if your audience is mainly young,
mainly middle class, mainly urban people then you may well be partly right.

But there are a lot of people who use devices you and I wouldn’t want to be stuck
with.

https://www.macworld.co.uk/feature/iphone/iphone-vs-android-market-share-3691861/

Worldwide sales data from 2019 shows that Android has a market share three times
bigger than Apple. Is this what you expected? Well, that’s worldwide so includes a
bunch of countries where paying the Apple premium isn’t an option. How about
Europe?

https://www.macworld.co.uk/feature/iphone/iphone-vs-android-market-share-3691861/

https://www.macworld.co.uk/feature/iphone/iphone-vs-android-market-share-3691861/

In Europe Apple have only a 5% bigger market share. So if your users and customers
are based in Europe, which for most of us is true, this is what you have to deal with.

https://www.macworld.co.uk/feature/iphone/iphone-vs-android-market-share-3691861/

https://vimeo.com/364402896

It’s true that mobiles are getting faster - or at least the top-end ones are. Alex Russell
from Google has done amazing research into the performance of mobile devices, I
highly recommend you checkout his presentation linked from this slide.

But even top-end devices use only a fraction of their power, and only for a fraction of
the time? Why? Heat. If you ran a decent mobile device at full-CPU-power for any
length of time it would become as hot as a light bulb in your hand. So device
manufacturers do loads of trickery inside those devices to ensure the hot bits run,
basically, as little as possible.

Bu most people don’t have top-end devices. Remember, we’re probably all affluent
geeks - power users with money to spend on expensive phones. We search for things
like “best smartphone 2020”. Most people don’t.

https://vimeo.com/364402896

https://www.standard.co.uk/tech/top-smartphones-2019-kantar-samsung-a-series-a4268926.html

1. Samsung Galaxy A50 (£309)
2. Samsung Galaxy A40 (£219)
3. Samsung Galaxy A20e (£169)
4. Redmi Note 7 (£168)
5. Apple iPhone XR (£629)
6. Samsung Galaxy A10 (£139)
7. Samsung Galaxy S10 (£799)
8. Apple iPhone 8 (£479)
9. Samsung Galaxy A70 (£369)

10. Samsung Galaxy S10+ (£899)

According to the Standard newspaper the best-selling smartphone in 2019 was the
Samsung Galaxy A50. In fact there are only two Apple devices in the top 10. What do
we see if we compare the specs of the A50 to the iPhone XR, which was the iPhone
model launched around the same time?

https://www.standard.co.uk/tech/top-smartphones-2019-kantar-samsung-a-series-a4268926.html

https://www.phonearena.com/phones/compare/Samsung-Galaxy-A50,Apple-iPhone-XR/phones/11075,10765

Looks OK, the Samsung has an octa-core processor, and the Apple has a hexa-core.
There’s not much in terms of megahertz between them. But if we look at the actual
geekbench scores:

https://www.phonearena.com/phones/compare/Samsung-Galaxy-A50,Apple-iPhone-XR/phones/11075,10765

https://browser.geekbench.com/ios_devices/54 , https://browser.geekbench.com/android_devices/860

Oh dear, the Apple wipes the floor with the Samsung.

This is just one example, but there are countless others. The spectrum of Android
devices out there is huge, and even mid-range ones like this A50 are no match for the
top-end devices many of us working in web development have in our pockets. In fact,
according to Alex Russell (seriously - check out his talks, they’re amazing) many
popular phone models now have the same performance as top-of-the-line models
from nearly a decade ago.

https://browser.geekbench.com/ios_devices/54
https://browser.geekbench.com/android_devices/860

https://vimeo.com/364402896

Just look at that Nokia 2 at the bottom right. It was released in June 2019 and costs
just £94 on Amazon, and has the same performance as an iPhone 4 or Galaxy S3.

As manufacturers look for ways to sell more devices, especially in emerging markets,
these low-end devices are going to become more and more common.

https://vimeo.com/364402896

If a user with one of these devices visits your website, which you’ve tested and works
great on your iPhone 11 or Galaxy S10, and they have a bad, janky experience, what
are they going to think?

This site sucks

They think the site sucks.

What’s the part of your site that is going to choke these slower devices? Yes, it’s the
language everyone loves to hate - or hates to love:

Scripts

We all know JavaScript is a big part of the web these days. But JavaScript, unlike
other types of assets such as images, requires parsing and executing before it does
anything. So what effect does that processing have on page performance? Back to
the HTTP Archive data we go.

https://almanac.httparchive.org/en/2019/javascript

The HTTP Archive found that the processing time for scripts varies wildly, with the
median around 849ms on desktop and 2.4 seconds on mobile.

Think about that. 2.4 seconds of … nothing. In terms of web page performance that’s
an eternity. The 90th percentile is over 10 seconds! That’s a whole lot of waiting
around for a lot of users. Where does all this JavaScript come from?

https://almanac.httparchive.org/en/2019/javascript

https://almanac.httparchive.org/en/2019/javascript

It comes mainly from 3rd parties. And every connection to a 3rd party means not only
do your users have to parse and execute their scripts, but you’re putting the
performance of your pages at the mercy of other sites over whom you have little or no
control. And that’s assuming all these scripts play nicely together. What if things go
wrong? What if there are clashes? What if dependencies fail to load, parse or execute
correctly?

https://almanac.httparchive.org/en/2019/javascript

https://mobile.twitter.com/juryjowns/status/699988463773298688

Jerry Jones, a developer at Automattic, puts it like this. Automattic, by the way,
develops WordPress - which powers by some counts over 30% of all websites, so
they know a thing or two about scale.

This dependency on JavaScript is fashionable at the moment.

https://mobile.twitter.com/juryjowns/status/699988463773298688

https://timkadlec.com/remembers/2020-04-21-the-cost-of-javascript-frameworks/

Tim Kadlec did some analysis on HTTP Archive data and found some startling facts.
He compared sites using jQuery, Angular, React and Vue. Here you can see that the
number of bytes of JavaScript sent to mobile devices varies a lot.

But it’s the processing time where it gets really scary.

https://timkadlec.com/remembers/2020-04-21-the-cost-of-javascript-frameworks/

https://timkadlec.com/remembers/2020-04-21-the-cost-of-javascript-frameworks/

All those milliseconds spent on parsing and executing JavaScript. This is yet more
evidence to show that you shouldn’t believe that everyone has the same experience
as you on your fast device when visiting sites using frameworks like these. Many -
most people - have a slow and janky experience.

But the use of JavaScript that really confuses me is when it’s entirely unnecessary.

https://timkadlec.com/remembers/2020-04-21-the-cost-of-javascript-frameworks/

https://coronavirus.data.gov.uk/

Here’s a very current example. The corona virus dashboard from gov.uk. Anyone
seen this? It relies on JavaScript. But here’s the thing; the page is updated about
once per day. So instead of this error message, perhaps they should show this:

https://coronavirus.data.gov.uk/

I’ve seen too many examples of static content relying on hugely complex and
powerful front-end frameworks, where a set of HTML pages would have done the job.

https://dracos.co.uk/wrote/coronavirus-dashboard/

Which is why Matthew Somerville, a developer from Birmingham, did a version of the
coronavirus dashboard which is just HTML, enhanced with a bit of JavaScript. On a
desktop his version is 87% smaller than the official gov.uk site - but provides the same
data and functionality.

Then there are actual errors, genuine production runtime bugs.

https://dracos.co.uk/wrote/coronavirus-dashboard/

https://www.stillbreathing.co.uk/2015/06/29/progressive-enhancement-matters

OK, who here has never seen a JavaScript error in the wild? This was one I saw a
few years ago which I’ve used as an example of the worst time for a JavaScript error
to happen - as a customer (in this case me) was about to purchase something.

A normal person - by which I mean someone who doesn’t browse the web with
devtools open - would click repeatedly, then eventually give up in despair. What’s the
outcome? That’s right.

https://www.stillbreathing.co.uk/2015/06/29/progressive-enhancement-matters

This site sucks

They think the site sucks.

Clearly we can do a lot to fix many of these performance problems. One of the ways
is just to send less stuff down the wire. Yes, I’m talking about assets.

Assets
They should be called
“liabilities”

Or, as some have said, they should be called “liabilities” - and you’ll see why. One of
the reasons web pages are slow is because of the assets that have to be
downloaded. Let’s dive back into the HTTP Archive Web Almanac.

https://almanac.httparchive.org/en/2019/page-weight

From the data gathered in 2019, the HTTP Archive has found that most web pages
have a total weight - taking into account scripts, images, CSS and everything else - of
multiple megabytes. On our beefy desktops we lose track of just how huge a
megabyte is in terms of raw data.

Did you know that the complete works of Shakespeare consists of about 3.5 million
characters, which is about 3.4MB. Let me make that clear.

https://almanac.httparchive.org/en/2019/page-weight

25% of web pages
are larger than
the complete works
of Shakespeare

25% of web pages
are larger than
the complete works
of Shakespeare

https://almanac.httparchive.org/en/2019/page-weight

And this huge size is increasing year on year. The change for the heaviest sites has
increased by more than 350KB in the year from 2018 to 2019.

One thing I hate, and I guess you do too, is when you think a page has finished
loading so you try to click or press on something but the page “jumps” as the layout
shifts because some other asset affecting layout has been downloaded. That makes
my blood boil.

https://almanac.httparchive.org/en/2019/page-weight

https://www.ericsson.com/assets/local/mobility-report/documents/2016/ericsson-mobility-report-feb-2016-interim.pdf

In fact Ericsson found that the stress caused by waiting for a slow web page on a
mobile device is comparable to watching a horror movie.

https://www.ericsson.com/assets/local/mobility-report/documents/2016/ericsson-mobility-report-feb-2016-interim.pdf

What might go wrong?
● The server hosting the file may be offline
● The file may be temporarily unreadable
● The URL for the file may be wrong
● DNS settings may be incorrect, meaning the server can’t be found
● The CDN may be down
● The file may be empty, or return an incorrect HTTP status code
● The file contains syntax error(s)
● The code may clash with other 3rd party code
● The file may have been modified in transit
● Concatenation/minification may have altered the file badly
● The browser may not fully understand the file (lacks JavaScript APIs, for example)

When it comes to assets, what are the kind of unexpected conditions we might
encounter? Here’s a non-exhaustive list. In some of these cases we can do our best
to ensure they can’t happen, but on some cases we have no control.

What’s the outcome for users when they wait ages for stuff to download, or any of
these problems occur?

This site sucks

They think the site sucks.

All these different aspects of performance are clearly a big problem. But there’s
another unexpected condition which degrades the experience users have of our sites.
That unexpected condition is the needs of the user for the site to be accessible.

Accessibility
You must be this tall
to use this website

I’m not talking about really advanced stuff, even the basics are being missed too
often.

https://almanac.httparchive.org/en/2019/accessibility

The Web Almanac highlights the scale of the problem, showing even something as
simple as semantic HTML - in this case the 6 heading levels - aren’t used on many
sites. These headings, along with other “landmark” HTML elements, help people who
use assistive technologies such as screenreaders to navigate the page. Oh, they also
help search engines understand the structure of the page, so put a tick in the box for
search engine optimisation as well.

https://almanac.httparchive.org/en/2019/accessibility

There are 140
HTML elements

The average 2
year-old knows
200-300 words

After all, the full range of HTML elements isn’t too hard to learn. A 2 year old could do
it.

Thanks to the great Bruce Lawson for correlating these two facts. OK, let’s look at
something simpler.

https://almanac.httparchive.org/en/2019/accessibility

Even though alt attributes have been around for 25 years,
49.91% of pages still fail to provide alt attributes for some

of their images,

and 8.68% of pages never use them at all.

Everyone knows that alt attributes need to be added to images, yes? Yet many pages
don’t.

So how about visual accessibility:

https://almanac.httparchive.org/en/2019/accessibility

https://almanac.httparchive.org/en/2019/accessibility

Only 22.04% of sites gave all of their text
sufficient color contrast.

Or in other words: 4 out of every 5 sites have text which easily
blends into the background, making it unreadable.

Colour contrast is very important, not just for our users and customers but for
ourselves. Eyesight gets worse in most humans as they age. The ability to distinguish
between colours reduces. It might not be fashionable, but increasing colour contrast
can even save battery life on mobile devices as users don’t have to turn the screen
contrast up as much.

https://almanac.httparchive.org/en/2019/accessibility

https://twitter.com/petervangrieken/status/1268171535736541184

I won’t dwell on accessibility too much longer, I have a whole other talk about that if
people are interested. I do want to say that increasing the accessibility of your pages
benefits everyone, in the same way that increasing the accessibility of a physical
space - in this example getting on or off a train - benefits more than just people with
disabilities.

This is catering for the human needs of people using our site - whether they have
visual or physical disabilities, or any of the wide range of cognitive problems.

And the other reason to do it, of course, is it’s the law.

https://twitter.com/petervangrieken/status/1268171535736541184

https://www.out-law.com/page-330

Equality Act 2010 (EQA)

The EQA imposes a duty on service providers to make “reasonable
adjustments” to enable disabled persons to access their services.

The Equality Act of 2010 in the UK gives clear guidance to service providers - which
includes businesses with a web site or app - to make “reasonable adjustments” for
disabled persons.

What happens if we fail to provide an accessible experience for users? You’ve
guessed it.

https://www.out-law.com/page-330

This site sucks

They think the site sucks.

Now, you might be thinking at this point:

Does it matter?

Does any of this matter? What effect do a few performance or accessibility problems
actually have on users?

There’s a great website that tells us all about what effect performance has:

https://wpostats.com/

Wpostats.com. Web performance optimisation stats collects examples showing the
effect of web performance for all kinds of organisations. Let’s run through a few of
them here.

https://wpostats.com/

https://www.dropbox.com/s/8rffw1px0yn05gm/Velocity-NY-Jed-Wood-Ancestry-User-Centered-Metrics.pdf?dl=0

Ancestry.com saw a 7% increase in conversions after
improving render time by 68%, page weight by 46%

and load time by 64%.

Improving performance by reducing render time and page weight increases
conversions.

https://www.dropbox.com/s/8rffw1px0yn05gm/Velocity-NY-Jed-Wood-Ancestry-User-Centered-Metrics.pdf?dl=0

https://www.slideshare.net/AndyDavies/fast-fashion-how-missguided-revolutionised-their-approach-to-site-performance-deltav-conference-may-2018/37

Fashion retailer Missguided removed
BazaarVoice for Android visitors.

Median page load time improved by 4 seconds,
and revenue increased by 26%.

Increasing performance by removing 3rd party assets improves revenue.

https://www.slideshare.net/AndyDavies/fast-fashion-how-missguided-revolutionised-their-approach-to-site-performance-deltav-conference-may-2018/37

https://youtu.be/ai-6qwT6ES8?t=462

The Trainline reduced latency by 0.3 seconds
across their funnel and customers spent an

extra £8 million a year.

Reducing latency makes customers spend more.

https://youtu.be/ai-6qwT6ES8?t=462

https://developers.google.com/web/fundamentals/performance/why-performance-matters

DoubleClick by Google found 53% of mobile
site visits were abandoned if a page took

longer than 3 seconds to load.

Users will abandon your site if it’s too slow.

https://developers.google.com/web/fundamentals/performance/why-performance-matters

http://radar.oreilly.com/2008/08/radar-theme-web-ops.html

Amazon sees a 1% decrease in revenue for
every 100ms increase in load time.

Increasing load time reduces revenue.

I could go on, but you get the picture. Company after company, organisation after
organisation have found that improving performance - handling the unexpected
conditions their sites encounter - consistently improves business metrics. Some of
these studies are from a while ago, but you’ll agree with me that good performance
isn’t going to go out of style any time soon.

OK, what about accessibility.

http://radar.oreilly.com/2008/08/radar-theme-web-ops.html

https://www.gov.uk/government/publications/disability-facts-and-figures/disability-facts-and-figures

There are over 11 million people with a limiting long
term illness, impairment or disability [in the UK]

Firstly the number of people who have a long-term illness, impairment or disability is
probably much higher than you thought. Many of these things affect how people use
the web. Did you know:

https://www.gov.uk/government/publications/disability-facts-and-figures/disability-facts-and-figures

https://www.sightadvicefaq.org.uk/newly-diagnosed-registration/registering-sight-loss/statistics

More than two million people are estimated to be
living with sight loss in the UK today.

This sight loss is severe enough to have a
significant impact on their daily lives.

More than 2 million people in the UK have some form of sight loss.

https://www.sightadvicefaq.org.uk/newly-diagnosed-registration/registering-sight-loss/statistics

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/874507/family-resources-survey-2018-19.pdf

In each of the three years to 2018/19, mobility was
the most prevalent impairment reported,

however it has decreased from 7.1 million to 6.8
million people (from 51 per cent to 48 per cent).

6.8 million people are living with some form of mobility problem, which especially for
older people can affect their manual dexterity such as using a mouse.

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/874507/family-resources-survey-2018-19.pdf

http://www.sightandsound.co.uk/hardware/braille-notetakers/braille-sense-u2-qt.html

People with disabilities often rely on software or specialist hardware, such as this
Braille keyboard. If your site doesn’t provide them with a good experience they’ll take
their custom to somewhere that does.

http://www.sightandsound.co.uk/hardware/braille-notetakers/braille-sense-u2-qt.html

https://wearepurple.org.uk/the-purple-pound-infographic/

The “purple pound” refers to the spending power of disabled households. If your
bosses don’t want to make your sites more accessible because it’s the right thing to
do, or because it’s the law, maybe showing them there’s money on the table will
persuade them.

So we’ve seen several examples of unexpected conditions that degrade the
experience of people using our sites. These conditions can happen at any layer in the
stack. Plus there are human needs for accessible sites.

And we’ve seen statistics showing that these things directly impact the success of the
site.

https://wearepurple.org.uk/the-purple-pound-infographic/

That’s a lot of suck.

That’s a lot of suck. But I guess a lot of it has rung true for many of us.

The question is:

Can we fix it?
Yes, we can!

I bet you’d thought I’d forgotten about my Bob the Builder threat, right? Nope.

There are many things we can do to fix these problems and ensure our sites are more
resilient to the unexpected conditions I’ve described. But I’ve got to warn you.

Some of the things I suggest aren’t fashionable. But I believe they are necessary to
improve our sites and ensure they are resilient to the many different ways they may
fail our users and customers.

I have six tips to suggest for you. The first tip is:

Tip 1:

Learn how
browsers work
Chickens go in, pies come out

Learn how browsers work. It’s always surprising to me how many developers working
on the web have never looked into how the runtime environment they use actually
functions. After all, the web is vastly different to desktop or server software.

With desktop and server software you either get everything or nothing. Either you
have the software or you don’t. And when you’re trying to open an old file format you
need the right version of the software.

Many years ago the web copied this ‘all or nothing’ approach. Does anyone
remember Flash, Shockwave or Java applets? If you had the right plugin you got the
full experience, but if not you got nothing. It was all or nothing.

https://en.wikipedia.org/wiki/All_or_Nothing_(Milli_Vanilli_album)

Milli Vanilli sang - and I use the term loosely - about this on their 1988 album ‘All or
Nothing’, which was included in Q magazine's 2006 list of the 50 worst albums ever
made.

But ‘all or nothing’ is not how the web was designed. Let’s have a look at a process
diagram for a browser.

https://en.wikipedia.org/wiki/All_or_Nothing_(Milli_Vanilli_album)

Requesting a web page begins by getting some HTML. If an error at that point
happens you get the status of that error - a 404 ‘Page Not Found’, 500 ‘Server Error’,
some kind of authentication error maybe. Once you get some HTML the browser
parses it and kicks off two different pipelines - one getting and parsing CSS, the other
getting, parsing and executing JavaScript.

If errors happen during those pipelines - assets not available, script execution
problems, whatever - the user still has the HTML. Yes, it’s not a pretty or fancy web
page, but they get something.

With SPA frameworks where content is loaded by JavaScript calls to APIs, there are
more places that errors can occur. In this model, everything has to work before the
user gets anything. Because if the script which fetches the content fails for some
reason, the user has nothing. This is ‘all or nothing’, in the same way that Flash and
Java applets were.

Of course, there’s a lot we can do to protect against this - server-rendering is a great
start.

https://www.c-sharpcorner.com/UploadFile/79037b/better-webapp-presentation-with-css/

Built into the design principles of the web is this simple idea: that these layers build on
each other to increase the richness of the user experience. HTML comes first, both
figuratively and literally - as when the web was being designed there was only HTML.
CSS and JavaScript came later and built on it.

So you need to understand at least to a reasonably level how browsers work. Learn
about rendering pipelines, blocking and non-blocking resources - there’s loads of
information out there to help you.

https://www.c-sharpcorner.com/UploadFile/79037b/better-webapp-presentation-with-css/

In traditional software development,
we have some say in the execution environment.

On the Web, we don’t.
On the Web ... all bets are off.

https://www.aaron-gustafson.com/notebook/a-fundamental-disconnect/

Because the reality is we don’t control the execution environment our sites run in. So
we should try to understand how it works so we can make our sites more resilient.

And the simplest practical way to get started is:

https://www.aaron-gustafson.com/notebook/a-fundamental-disconnect/

Tip 2:

Learn and use
semantic HTML

Semantic HTML. By which I mean HTML which describes what the content is. We’ve
already seen there are around 140 HTML elements, so let’s use them.

<span class="button"

onclick="magic()">I’m a button,

honest!

<div goto="page.html">Yo bro, I’m a

link innit</div>

<div style="font-size:mega;

font-weight:boldiest">I AM THE MAIN

TITLE, BOW BEFORE ME</div>

<button>I’m actually a

button</button>

I’m a link, the

superpower of the web

<h1>I think you’ll find I am the

main title of this page</h1>

That means using buttons for buttons, links for links, proper headings. Doing this not
only fixes many accessibility problems, but helps with search engine optimisation and
saves you writing code. For example, the functionality built into the humble button
element means it’s focusable, can be triggered by various keypresses as well as the
mouse. That’s all functionality that you don’t have to write.

I’m not saying don’t use div and span elements at all - they have their uses - but you
should look for a more suitable element first.

https://www.theolognion.com/developer-who-wrote-vanilla-html-css-in-notepad-declared-a-witch/

Knowing HTML isn’t fashionable, but I’d argue it should be. Because semantic HTML
means that your pages have a ‘flow’ to them which is discoverable programmatically.

https://www.theolognion.com/developer-who-wrote-vanilla-html-css-in-notepad-declared-a-witch/

In this example you can see how headings used properly allow the page to be
navigated by assistive technologies. Users can skip over entire sections if they don’t
contain content they’re interested in.

The over use of div elements for layout is a particular bugbear of mine. It’s been
called ‘divitis’, and you can see why:

Hadouken!

Almost everything you see here in this code from Facebook is a div.

I get it, modern sites can be complex, but having a huge number of DOM elements
can cause problems.

https://web.dev/dom-size/

In fact, Google’s Lighthouse tool (which we’ll look at in a moment) penalises sites
where the DOM tree is too large.

As developers we should get familiar with the output our systems are producing. That
means we need to get good at investigation and testing.

https://web.dev/dom-size/

Tip 3:

Make testing tools
your best friends

Fortunately, there are loads of great tools to help us. The first one you already use,
devtools.

Devtools in all of the major browsers are amazingly powerful. I remember the days
before devtools, dropping console.log calls everywhere and hoping for the best. If it
wasn’t for people like Chris Pederick who paved the way by creating browser
extensions for web developers I probably would have gone bonkers by now.

As well as the usual features you’re already using, like DOM inspection and adding
breakpoints, devtools offer other features you can see here such as network throttling
simulation, emulation of vision deficiencies, flame charts of JavaScript calls and Edge
is bringing back the 3D view. All great stuff.

https://developers.google.com/web/tools/lighthouse/

Built into the devtools for Chromium-based browsers is Lighthouse. This is an
automated tool for checking the quality of web pages, based on rules set by Google. It
gives a good high-level view of how well a page is working in terms of performance,
accessibility and SEO. It’s something you should run regularly, but as it’s built into
your own browser and can only simulate network conditions, it’s not a proper test of
what your users actually experience.

For that you need a tool which actually loads your pages from different locations.

https://developers.google.com/web/tools/lighthouse/

https://webpagetest.org/

So next on your list should be webpagetest.org. It may not be the prettiest of sites, but
for testing performance it’s a free tool of astounding quality. Here I’m testing my site
with a Moto G device - yes, that’s a real phone available for free from Dulles, in the
US state of Virginia. Actual devices are available from just a couple of locations
worldwide, but there are dozens of testing locations offering desktop browsers all over
the planet.

https://webpagetest.org/

https://webpagetest.org/result/200608_82_41290f4140d42390ef07f6f6ef898935/

Web Page Test shows loads of deep information about the performance of your site.
One of my favourites is the filmstrip view:

https://webpagetest.org/result/200608_82_41290f4140d42390ef07f6f6ef898935/

https://webpagetest.org/result/200608_82_41290f4140d42390ef07f6f6ef898935/

The top view here is the first load with an empty cache, the bottom view is a repeat
visit with a primed cache. I’ve had great success showing these filmstrips to
managers and other non-technical people to show what the performance of their sites
actually looks like. And when you compare your slow site to a competitor’s fast site,
there’s no better way to get buy-in for making performance improvements.

Please do take some time to have a look around Web Page Test at everything it does.
It can be quite daunting to a newbie, and as it’s free you sometimes have to wait in
line behind lots of other tests. If your organisation is happy paying a bit of money then
do look at Speedcurve.

https://webpagetest.org/result/200608_82_41290f4140d42390ef07f6f6ef898935/

https://speedcurve.com/

SpeedCurve is built on top of Web Page Test and allows you to set up scheduled
tests, comparisons to other sites, performance budgets (which will tell you if your site
breaches those budgets - we’ll discuss this more in a bit) and much more. It’s all really
gorgeous, perfect for putting on a dashboard, and the SpeedCurve team comprises of
some of the best web performance engineers in the business.

https://speedcurve.com/

https://requestmap.webperf.tools/

Linked from Web Page Test, and using its results, is a tool called Request Map. This
visually shows the relationship a site has with third party domains. Here I’ve tested
the site for a large UK music equipment retailer, and you can see there’s a whole lot
more 3rd party calls than you might expect. Request Map traces calls as far as it can,
so you can see branches of calls going off into the distance. This is why 3rd party
calls are a performance killer.

https://requestmap.webperf.tools/

https://developers.google.com/speed/pagespeed/insights/

It’s also worth mentioning PageSpeed Insights, which is another Google tool providing
much the same information as Lighthouse, but using Google’s infrastructure rather
than your own browser. What I want to draw your attention to here is the mention of
“Core Web Vitals”.

https://developers.google.com/speed/pagespeed/insights/

https://web.dev/vitals/

Core Web Vitals is a new initiative from Google which tests three major aspects of
performance: how quickly a page looks like it loads (known as largest contentful
paint), how quickly a user can interact with it (called first input delay) and whether the
layout shifts, which as I mentioned earlier is something which really annoys people.

These metrics are built into PageSpeed Insights, Lighthouse and Web Page test, so
they are a useful high-level set of metrics to use.

https://web.dev/vitals/

I mentioned testing from real devices is much better than just simulating a slow
network connection. So if you have old phones you can put a pay as you go SIM card
in that would be fantastic. Perhaps your organisation is willing to pay for a few popular
cheap smartphones and tablet devices to use for testing. A ‘device lab’ like this can be
shared between multiple teams.

https://www.sitespeed.io/, https://webperformance.slack.com

Web performance is really easy to get into, there are loads of resources and tools to
help you, and a thriving community on social media. There’s even a Slack workspace
at webperformance.slack.com where you can talk to other performance engineers.
Sitespeed.io also has a great collection of tools and lots of guides to get you started.
There’s no excuse not to make your sites fast.

OK, that’s a lot about testing performance. What about accessibility.

https://www.sitespeed.io/
https://webperformance.slack.com

https://wave.webaim.org/ , https://www.deque.com/axe/

First up has to be WAVE - the web accessibility evaluation tool. You can use this from
the website linked here, or there are extensions for Chrome and Firefox. Also
displayed here is the aXe extension from Deque. Both will highlight common
accessibility issues.

https://wave.webaim.org/
https://www.deque.com/axe/

https://www.nvaccess.org/

For a deeper look into possible accessibility problems you should test your pages
using screenreader software. There are extensions for browsers, but it’s also worth
using one of the “real” ones - NVDA from NV Access is free and open source.

Screenreaders can be very daunting if you’ve never used one before. But persevere
with them, they are incredibly useful. It’s also worth trying to navigate and use your
site using just a keyboard - that’s easy to do and very enlightening.

https://www.nvaccess.org/

https://alistapart.com/article/reframing-accessibility-for-the-web/

Finally, and most importantly, if you’re serious about making your site accessible your
should investigate testing with real users. People who use assistive technologies, who
can give you the wisdom of their lived experience.

According to world-renowned accessibility experts the Paciello Group, automated
accessibility tools will only catch about 30% of issues. Get serious about the other
70%.

https://alistapart.com/article/reframing-accessibility-for-the-web/

Tip 4:

Constantly question
your assumptions
All is not as it seems, Watson

The next step is to question all your assumptions. Earlier we looked at assumptions
about the network, but there are many other assumptions we make.

https://www.stillbreathing.co.uk/2015/09/03/the-tough-truth-of-reality

For example we can assume which browsers and devices people are using. As we’ve
seen, the range of devices people may be using is huge. Developers often assume
that over time the capabilities and quality of things like networks, browsers and
devices increase - and they do. We believe that the old, outdated, slow stuff is left
behind in what I’ve called the Blessed Void of Obsolescence.

https://www.stillbreathing.co.uk/2015/09/03/the-tough-truth-of-reality

https://www.stillbreathing.co.uk/2015/09/03/the-tough-truth-of-reality

But the tough truth of reality is that we never really leave the old stuff behind. For
example, as we’ve seen, cheap new devices get released which have the same
performance profile of top-end devices from nearly a decade ago.

You should check the analytics for your site regularly see whether the assumptions
you make about devices, browsers, screen sizes, and more are still valid.

https://www.stillbreathing.co.uk/2015/09/03/the-tough-truth-of-reality

Web Page Test can help with one other assumption - that 3rd parties can be relied on.
When you start a test, under the ‘advanced’ section there’s a tab called ‘SPOF’ which
stands for ‘single point of failure’. Here you can simulate what would happen if certain
domains - for example your CDN, or a 3rd party you rely on - were to fail. Yes, this is
your very own chaos monkey.

Chaos monkey, if you didn’t know, is something invented by Netflix to test how
resilient their systems are. Basically it’s a bot which randomly turns services off to see
whether Netflix as a whole keeps running. This feature in Web Page Test allows you
to do that as well.

Tip 5:

Do you really need
all that JavaScript?
Say when...

The next tip is the least fashionable suggestion I’ll make. JavaScript is cool, but
sometimes you don’t need it - or at least not so much of it, as we saw with the
coronavirus dashboard earlier. Some sites seem to lose sight of the content they are
actually serving up. For example, how about a site that shows coupons - pretty static
content, right?

http://sighjavascript.tumblr.com/

Except when the JavaScript fails you get only this beautiful template. How about an
image gallery like instagram? That’s got to give the user _something_ if the script
fails, right?

http://sighjavascript.tumblr.com/

http://sighjavascript.tumblr.com/

Nope, nothing. Don’t get me wrong, I’m not saying JavaScript is bad - but relying on it
too much can lead to negative outcomes for users.

Several years ago a team was put together to rebuild a newspaper site in the US
called the Boston Globe. It was one of the first big responsive designs. One of the
team members said this about how they used JavaScript.

http://sighjavascript.tumblr.com/

Lots of cool features on the Boston Globe
don’t work when JS breaks;

“reading the news” is not one of them.

https://resilientwebdesign.com/chapter5/

This, for me, is a pragmatic approach. The core functionality of that site is to show
people the news, so the team made that functionality as resilient as it could be. Other
features were considered enhancements - they aren’t the core functionality, so even if
they break the user still gets what they visited the site for.

This quote, by the way, is from the book ‘Resilient Web Design’ by Jeremy Keith. It’s a
fantastic book, not just for the content but because it’s online, free, and it’s a
progressive web app. The book practices what it preaches.

This isn’t a fashionable view, but it’s not just me saying that a total dependence on
JavaScript needs to be considered very carefully. Other developers have the same
opinion.

https://resilientwebdesign.com/chapter5/

https://mobile.twitter.com/dan_abramov/status/1259614150386425858

For example Dan Abramov, who recently said this: “Client-side only is not
sustainable”. Who is Dan Abramov?

https://mobile.twitter.com/dan_abramov/status/1259614150386425858

The co-author of redux and create-react-app, who works on the react team.

The majority of
websites aren’t,
and don’t need to be,
single-page apps.

And not just Dan and me. Guess where you’ll find this phrase?

https://reactjs.org/docs/add-react-to-a-website.html

The majority of
websites aren’t,
and don’t need to be,
single-page apps.

On the react site.

https://reactjs.org/docs/add-react-to-a-website.html

Computers and browsers are stupid. They will fail, and
they will fail in ways you didn't expect

and you cannot reproduce.

Code as if everything will break.

http://icant.co.uk/articles/pragmatic-progressive-enhancement/

If we’re focussed on ensuring that our users are successful in what they’re trying to do
- read some content, fill in a form, search for some information - then we should code
to make that successful outcome as likely as possible. Where appropriate, JavaScript
is a great tool. But where it’s not needed it can cause problems for users that could be
avoided.

http://icant.co.uk/articles/pragmatic-progressive-enhancement/

Pre-rendered sites can be enhanced with JavaScript
and the growing capabilities of browsers

and services available via APIs.

Jamstack => JavaScript, APIs and Markup

https://jamstack.org/

There’s an approach gaining in popularity called Jamstack - that stands for
JavaScript, APIs and markup. Essentially it describes pre-rendered information that is
enhanced with judicious use of JavaScript. So you get all the performance and
stability of server-rendered HTML, and all the whizz-bang of client-side interactivity.

And when this is combined with a service worker, which can provide advanced
caching and offline support - not to mention the ability for your site to be “installed” to
a device - it’s a compelling approach.

https://jamstack.org/

Tip 6:

Create a
performance culture

My final tip is to create a performance culture. In the same way we implement CI/CD
pipelines and automate tests to catch regression bugs at code level, we should do the
same at user experience level.

All the tools I mentioned earlier help with this, but nothing beats getting close to the
experience real users have with our sites. That may be through a real user monitoring
system, or web analytics - these are often owned by a marketing department, so you
may need to bridge that gap.

https://www.performancebudget.io/

One great way to start is to create a performance budget. This defines upper limits for
asset sizes and various metrics to ensure you keep your pages fast. The
performancebudget.io tool helps you craft a budget suitable for your site - but be
warned, you’ll have MUCH less to play with than you would like.

https://www.performancebudget.io/

https://gerrymcgovern.com/

Often, the secret of
the most successful
digital companies in
the world is their
obsession with their
customers.

https://gerrymcgovern.com/

Gerry McGovern is a master at helping organisations focus on what customers
actually want. If you visit his website linked here you can watch a selection of his
talks, I guarantee you’ll be glad you did.

Gerry often talks about ‘top tasks’ - the things that visitors most often want to
accomplish on our sites. Perhaps it’s find a product, or download some information, or
make an insurance claim. Whatever those top tasks are, we should strive to remove
as many barriers as possible which stop the user achieving their goal. Resilience of
the site, ensuring it doesn’t fail the user when it encounters unexpected conditions, is
a big part of that.

https://gerrymcgovern.com/
https://gerrymcgovern.com/

This stuff matters

Because this stuff - performance, accessibility, this resilience I’ve talked about -
matters. It matters to our users and customers, and when they are happy we’ll get
better outcomes from the systems we build.

Back in April 2000 an article was published by John Allsop on the A List Apart
magazine. Called ‘A Dao of Web Design’ it was a call to understand and design for
the web medium - which at the time was still fairly young. The article is incredibly
visionary, alluding to responsive design ten years before Ethan Marcotte coined the
term, and encouraging us to think about different browsers, platforms and screens -
six years before the first iPhone revolutionised where the web could be used.

In that article John wrote this:

The control which designers know in the print medium,
and often desire in the web medium, is simply a function

of the limitation of the printed page.

We should embrace the fact that the web
doesn’t have the same constraints,

and design for this flexibility.

https://alistapart.com/article/dao/

While this is absolutely true, I think we can paraphrase that to be more suitable for
web developers, like this:

https://alistapart.com/article/dao/

The control which developers know in the desktop
medium, and often desire in the web medium, is simply a

function of the delivery mechanism of desktop apps.

We should embrace the fact that the web

doesn’t have the same delivery mechanism,

and develop for this reality.

If you remember back 3 or 4 weeks ago when I started this presentation, I talked
about an ‘all or nothing’ approach, which is what you get with desktop apps and with
plugins like Flash and Java applets.

The web wasn’t designed to work like that, and we’ve seen that the layering of
different technologies to build a complete page - HTML, CSS, JavaScript - means
there are many potential points of failure. But we can and should try to make our sites
resilient to these unexpected conditions, and not fail our users and customers.

There’s a name for this mindset of building websites: progressive enhancement.

Progressive enhancement is about
building robust products and

being paranoid about availability.

It is about asking “if” a lot.

https://www.christianheilmann.com/2015/02/18/progressive-enhancement-is-not-about-javascript-availability/

It means asking “if” a lot. If this file is missing, if this API call fails, if the browser
doesn’t execute this script correctly - what then. It’s only when we consider those
things, question our assumptions, that we can truly make resilient websites.

https://www.christianheilmann.com/2015/02/18/progressive-enhancement-is-not-about-javascript-availability/

expect
the

unexpected

We as developers need to expect the unexpected on the web.

Thank you
Let’s go fix it!

